1. What is the equation for the axis of symmetry of the quadratic function \(f(x) = x^2 - 6x + 5 \)?
 (a) \(x = 1 \) (b) \(x = -1 \) (c) \(x = 2 \) (d) \(x = -2 \) (e) \(x = 3 \) (f) \(x = -3 \)

2. Form a polynomial of degree three with real coefficients so that \(2 + i \) and \(-1 \) are zeros.
 (a) \(x^3 + 3x^2 + x - 5 \) (b) \(x^3 - 3x^2 - x - 5 \) (c) \(x^3 - 3x^2 + x + 5 \) (d) \(x^3 + 3x^2 - x + 5 \) (e) \(x^3 - 3x^2 - x + 5 \) (f) \(x^3 - 3x^2 + x - 5 \)

3. Let \(R(x) = \frac{2x^4 + x^3 + 3x^2 + 2x - 4}{x^3 - x^2 + x - 1} \). Then \(R(x) \) has an oblique asymptote at:
 (a) \(y = 2x + 3 \) (b) \(y = 2x + 2 \) (c) \(y = 2x + 1 \) (d) \(y = 2x - 1 \) (e) \(y = 2x - 2 \) (f) \(y = 2x - 3 \)

4. Solve the inequality: \(\frac{x(x + 5)^2}{x^2 - 1} > 0 \)
 (a) \((-\infty, -5) \cup (-1, 0) \cup (0, 1) \) (b) \((-\infty, -5) \cup (-1, 1) \) (c) \((-1, 0) \cup (1, \infty) \) (d) \((-\infty, -5] \cup (-1, 1) \) (e) \([-5, -1) \cup \{0\} \cup (1, \infty) \) (f) All real numbers.

5. Solve the inequality: \(\frac{5x}{x + 3} > 2 \).
 (a) \((-3, 2) \) (b) \((-\infty, -3) \cup (2, \infty) \) (c) \((-3, -2) \) (d) \((-\infty, -3) \cup [2, \infty) \) (e) \((-2, 3) \)

6. Find \(k \) so that \((x + 1) \) is a factor of \(x^{99} + kx^2 - kx + 3 \).
 (a) \(k = -5 \) (b) \(k = -3 \) (c) \(k = -1 \) (d) \(k = 1 \) (e) \(k = 3 \) (f) \(k = 5 \)

7. What is the remainder when \(x^{1000} + 27x^{997} + 2x^2 + 4x - 7 \) is divided by \(x + 3 \)?
 (a) \(-2 \) (b) \(-1 \) (c) \(0 \) (d) \(1 \) (e) \(2 \) (f) \(3 \)
8. Let \(f(x) = 3x^4 - 7x^2 - 20 \). Which of the following statements is true?

(a) The real zeros of \(f(x) \) are \(\pm \sqrt{3} \) and the imaginary zeros are \(\pm 2i \).
(b) The real zeros of \(f(x) \) are \(\pm 2 \) and the imaginary zeros are \(\pm \sqrt{3} i \).
(c) The real zeros of \(f(x) \) are \(\pm \sqrt{5} \) and the imaginary zeros are \(\pm 2i \).
(d) The real zeros of \(f(x) \) are \(\pm 2 \) and the imaginary zeros are \(\pm \sqrt{5} \frac{3}{3} i \).
(e) The real zeros of \(f(x) \) are \(\pm 2 \) and the imaginary zeros are \(\pm \sqrt{5} i \).

9. Find the domain for the function graphed below.

(a) all real numbers \(x \)
(b) \(\{x| -2 \leq x \leq 0\} \)
(c) \(\{x| -3 \leq x \leq 0\} \)
(d) \(\{x| -3 \leq x \leq 3\} \)
(e) \(\{x| x \geq -3\} \)

10. If the number \(y \) is in the range of \(f(x) = \frac{2x + 3}{1 - x} \), then which of the following must be true?

(a) \(y \neq -2 \) (b) \(y \neq -1 \) (c) \(y \neq 0 \) (d) \(y \neq 1 \) (e) \(y \neq 2 \) (f) \(y \neq 3 \)

11. The equation \(2^{x^2} = \frac{8}{2^x} \) has two solutions. Find the sum of the two solutions.

(a) \(-2\) (b) \(-1\) (c) \(0\) (d) \(1\) (e) \(2\) (f) \(3\)

12. The equation \(\log_3(x^2 + x + 25) = 3 \) has two solutions. Find the sum of the two solutions.

(a) \(-2\) (b) \(-1\) (c) \(0\) (d) \(1\) (e) \(2\) (f) \(3\)

13. Select the function that best describes the given graph.

(a) \(f(x) = 2^x \)
(b) \(f(x) = 2^{x-1} \)
(c) \(f(x) = 2^{x-2} \)
(d) \(f(x) = 2^{x+1} \)
(e) \(f(x) = 2^{x+2} \)
14. Solve the equation $2e^{5x} = \frac{3}{e^2}$ for x.
 (a) $\frac{\ln 3}{2}$ (b) $\frac{\ln 3 - \ln 2 - 2}{5}$ (c) $\frac{\ln 3 - \ln 2 - 2e}{5}$
 (d) $\frac{\ln 3 - \ln 2 - 1}{5}$ (e) $\frac{\ln 3 - \ln 2 + 1}{5}$

15. Use properties of logarithms to find the exact value of the expression $\log_5 27 \cdot \log_3 10 \cdot \log_{10} 5$.
 (a) 3 (b) 6 (c) 1 (d) -3 (e) -6 (f) 7

16. If $\log_a x = 2$, $\log_a y = 4$, and $\log_a z = 5$, find the value of $\log_a \left(\frac{x^3 \sqrt{y^2}}{z^5} \right)$.
 (a) -2 (b) -1 (c) 0 (d) 1 (e) 2 (f) 3

17. How many years would it take an amount of money to quadruple (4 times) if it is invested at 8% compounded continuously?
 (a) $\frac{2 \ln 4}{25}$ (b) $\frac{\ln 100}{2}$ (c) $\frac{25 \ln 2}{4}$ (d) $\frac{25 \ln 4}{2}$ (e) $4 \ln 3$ (f) $0.04 \ln 3$

18. Write an equation for the parabola.
 (a) $y = 2x^2 + 4x + 3$
 (b) $y = 2x^2 + 4x - 3$
 (c) $y = 2x^2 - 4x + 3$
 (d) $y = 2x^2 - 4x - 3$
 (e) $y = x^2 + 2x + 3$
 (f) $y = 3x^2 + 6x + 3$

19. Which of the following conics is represented by the equation $4(x - 2)^2 - y + 36 = 0$?
 (a) Circle (b) Ellipse (c) Parabola (d) Hyperbola (e) None of these

20. Find the foci of the ellipse $\frac{(x + 1)^2}{16} + \frac{(y - 2)^2}{25} = 1$.
 (a) (1,-1) and (1,5) (b) (-1,-1) and (-1,5) (c) (-4,2) and (2,2) (d) (-4,-2) and (2,-2) (e) (4,2) and (6,2)

21. Solve the system of equations for y.
 \[
 \begin{align*}
 x + y - z &= 4 \\
 x - y + z &= 2 \\
 x + y + z &= 6 \\
 \end{align*}
 \]
 (a) $y = 1$ (b) $y = 2$ (c) $y = 3$ (d) $y = 4$ (e) $y = 5$
22. If \(\frac{4x - 9}{x^2 - 3x + 2} = \frac{A}{x - 1} + \frac{B}{x - 2} \)

(a) \(A + B = 1\) (b) \(A + B = 2\) (c) \(A + B = 3\) (d) \(A + B = 4\) (e) \(A + B = 5\)

23. Find the infinite geometric sum \(1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \cdots\).

(a) 5 (b) \(\frac{5}{2}\) (c) \(\frac{4}{5}\) (d) \(\frac{4}{3}\) (e) \(\frac{8}{3}\)

24. Write \(2.27\) as a fraction in simplest form.

(a) \(\frac{235}{99}\) (b) \(\frac{79}{33}\) (c) \(\frac{77}{33}\) (d) \(\frac{26}{11}\) (e) \(\frac{25}{11}\)

25. Find the constant term in the expansion of \(\left(\frac{x^2 - \frac{1}{x^2}}{x^4}\right)^8\).

(a) 70 (b) \(-70\) (c) 28 (d) \(-28\) (e) 56 (f) \(-56\)

26. Find the coefficient of \(x^{39}\) in \((x - 1)^{41}\).

(a) 820 (b) \(-820\) (c) 41 (d) \(-41\) (e) 410 (f) \(-410\)

27. How many ways can you arrange the letters in the word \(MISSISSIPPI\)?

(a) 3,960 (b) 6,930 (c) 34,650 (d) 4,360 (e) 1,000

28. How many ways can a president, vice-president, and secretary be elected from a class of 12 people?

(a) 720 (b) 1320 (c) 36 (d) 220 (e) 72

29. Determine the probability of not getting 7 when rolling 2 fair dice.

(a) \(\frac{35}{36}\) (b) \(\frac{11}{12}\) (c) \(\frac{2}{3}\) (d) \(\frac{3}{4}\) (e) \(\frac{5}{6}\)

30. Three people randomly choose integers between 1 and 6 inclusive. What is the probability that at least two of them choose the same number?

(a) \(\frac{1}{9}\) (b) \(\frac{2}{9}\) (c) \(\frac{3}{3}\) (d) \(\frac{4}{9}\) (e) \(\frac{5}{9}\)
1. E
2. C
3. A
4. C
5. B
6. C
7. B
8. D
9. D
10. A
11. A
12. B
13. C
14. B
15. A
16. E
17. D
18. A
19. C
20. B
21. B
22. D
23. C
24. E
25. A
26. A
27. C
28. B
29. E
30. D